In a $K$-pair-user two-way interference channel (TWIC), $2K$ messages and$2K$ transmitters/receivers form a $K$-user IC in the forward direction ($K$messages) and another $K$-user IC in the backward direction which operate infull-duplex mode. All nodes may interact, or adapt inputs to past receivedsignals. We derive a new outer bound to demonstrate that the optimal degrees offreedom (DoF, also known as the multiplexing gain) is $K$: full-duplexoperation doubles the DoF, but interaction does not further increase the DoF.We next characterize the DoF of the $K$-pair-user TWIC with a MIMO, full-duplexrelay. If the relay is non-causal/instantaneous (at time $k$ forwards afunction of its received signals up to time $k$) and has $2K$ antennas, wedemonstrate a one-shot scheme where the relay mitigates all interference toachieve the interference-free $2K$ DoF. In contrast, if the relay is causal (attime $k$ forwards a function of its received signals up to time $k-1$), we showthat a full-duplex MIMO relay cannot increase the DoF of the $K$-pair-user TWICbeyond $K$, as if no relay or interaction is present. We comment on reducingthe number of antennas at the instantaneous relay.
展开▼
机译:在$ K $对用户双向干扰信道(TWIC)中,$ 2K $消息和$ 2K $发送器/接收器形成正向$ K $用户IC($ K $ messages),另外一个$反向K $用户IC,以全双工模式运行。所有节点可以交互,或使输入适应于过去接收到的信号。我们推导了一个新的外部界限,以证明最佳自由度(DoF,也称为多路复用增益)为$ K $:全双工操作使DoF倍增,但相互作用并不会进一步增加DoF。带有MIMO全双工中继的$ K $对用户TWIC。如果中继是非因果的/瞬时的(在时间$ k $之前转发其接收信号的功能,直到时间$ k $)并且具有$ 2K $天线,则建议采用一次性方案,其中中继减轻所有干扰以实现干扰-$ 2K $自由度。相反,如果中继是有因果关系的(有时$ k $会转发其接收到的信号的功能,直到时间$ k-1 $),我们表明全双工MIMO中继不会增加$ K $对对的DoF用户TWIC超出$ K $,就好像没有中继或交互。我们评论减少瞬时继电器的天线数量。
展开▼